
Journal of  Statistical Physics, Vol. 21, No. 3, 1979 

The Kinetic Ising Model: Exact Susceptibilities of 
Two Simple Examples 

J. C. Kimball 1,2 

Received January 30, 1979; revised March 13, 1979 

The susceptibility of a modified version of the one-dimensional kinetic 
Ising model is obtained and compared with the susceptibility of the Glauber 
version of this model. Spin-flip rates in the new model are picked so no 
spin-flip rate vanishes as the temperature vanishes. Despite the more rapid 
spin flips, the new model exhibits an infinitely slow approach to equilib- 
rium in the low-temperature limit which is similar to the slowing down 
exhibited in the Glauber model. The new model also exhibits two different 
decay rates toward equilibrium, which are called the transient and slow 
decay rates. The Glauber model is characterized by only a single decay 
rate toward equilibrium. 

KEY WORDS: Glauber model; master equation; frequency-dependent 
susceptibility; Kubo formula; transient response. 

1. I N T R O D U C T I O N  

The one-d imens iona l  kinetic  Ising mode l  was in t roduced  by  G la ube r  m in 1963 
as a soluble p rob lem in nonequi l ib r ium stat ist ical  mechanics  (however,  see 
atso Ref. 2). Proper t ies  o f  the G laube r  mode l  and  o ther  t ime-dependen t  
genera l iza t ions  of  the Ising mode l  have been reviewed by  Kawasak i  (3~ and  
by  Binder.  ~4~ 

One is na tura l ly  mot iva ted  to consider  general iza t ions  o f  G laube r ' s  
or iginal  model .  W o r k s  on more  compl ica ted  models  have included the 
extension to h igher  dimensions,  the app l ica t ion  of  magnet ic  fields, and  the 
choice of  a l ternat ive spin-flip rates. (~-9~ Unfor tuna te ly ,  all nontr iv ia l  general-  
izat ions presented  so far  have been solved only  approximate ly .  ~1o-17~ 
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The major contribution of this paper is the presentation of a modification 
of Glauber's original model, for which the uniform field susceptibility may 
be obtained exactly. The modification is an alternative choice of the spin-flip 
rates, which changes the dynamics of the system but leaves the equilibrium 
properties unchanged. Only the linear response of this new version of the 
kinetic Ising model will be investigated. 

Like the Glauber solution, the new version of the kinetic Ising model 
exhibits an infinitely slow relaxation to equilibrium as the temperature is 
lowered to zero. The slowing occurs even though no spin-flip rate becomes 
slow in the new model. Also, the new model exhibits both " s low"  and 
" t ransient"  responses to an applied magnetic field, while the Glauber 
solutions can be characterized by a single time scale. 

The general structure of the kinetic Ising model and the formalism 
necessary to obtain the linear response are discussed in Section 2. Some of the 
more tedious algebra of this section has been placed in the appendix. The 
formal solutions for the susceptibility of the Glauber model and the new 
version of the kinetic Ising model are presented in Section 3. A qualitative 
discussion of the nature of these two solutions, their similarities and differ- 
ences, is presented in Section 4. 

2. THE  M A S T E R  E Q U A T I O N  A N D  LINEAR RESPONSE 

The time dependence of the kinetic Ising model is described by a master 
equation. It is convenient to change variables so that the master equation 
can be written in terms of a Hermitian operator called T. Then the linear 
response of the system to an applied magnetic field can be written as a simple 
expression which is analogous to a classical Kubo formula. A description of 
the Ising model, the master equation and T, and the Kubo formula follows. 

The energy of a configuration ~ of an Ising model is 

N N 

= - J  ( 2 . 1 )  

where the sign of each ~r~ is prescribed by the configuration ~. The nearest 
neighbor spin-spin interaction J is assumed to be positive, and the magnetic 
field is H. In thermal equilibrium, the probability that the Ising model is in 
configuration ~ is 

P,~ = e x p [ - f l E ( ~ ) ] / Z  (2.2) 

where/3 is the inverse temperature in units of Boltzmann's constant, and Z 
is the partition function. 

Nonequilibrium situations are of interest when one considers the kinetic 
Ising model. In this case, the probability of finding the system in configuration 
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is a time-dependent quantity P~( t ) ,  which is not necessarily given by the 
equilibrium probability P . .  The time dependence of the probabilities is 
described by a master equation 

dP~( t )  
d t  - ~ ,  [W(y lcOP~( t )  - W(~[7)P~( t ) ]  (2.3) 

7 

Here, W(~@) is the rate at which an ensemble of systems in configuration 
(z would make transitions to configuration 7. In equilibrium, the rate of 
transitions from c~ to y must cancel the transitions from 7 to c~. This condition 
of detailed balance means 

W(TIc0P~ = W(c@)P~ (2.4) 

The master equation and the probabilities P~( t )  have a simple intuitive 
meaning, but from a formal point of view it is more convenient to work 
with a new set of variables ~b~(t), which give the master equation a manifestly 
Hermitian form? The new variables are 

~b~(t) = P~(t)/~/-ff-~ (2.5) 

The notation can be made more compact by treating each configuration of 
the spin system as one of the orthonormal basis vectors of a 2N-dimensional 
vector space, so ~--> ]~). Using this vector space notation and the new 
variables, we find that the master equation becomes 

d [ ~ ( t ) ) / d t  = - Tj~b( t ) )  (2.6) 
where 

lr = ~ 4,.(t)[=) (2.7) 
c~ 

and the Hermitian operator T is defined in terms of its matrix elements. 

@ l r l a )  = + ~ W(7]~) (2.8) 

The time-independent equilibrium solution to the master equation is denoted 
]~b), with the time index eliminated, and from Eq. (2.6), 

TIC,) = 0 (2.9) 

Note that T has a nonnegative spectrum, because no probability can grow 
with time. This means l~b) is the "ground state" of T. 

Equilibrium properties of the Ising model can be described in terms of 
the ground-state vector I~b) and the Pauli matrices or, ~ associated with the 
spin variables ~ .  For example, 

(crzcr.) = (~bl~,~e.~[~b) (2.10) 

* This notation is similar to that introduced in Ref. 18. 
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The linear response of the kinetic Ising model can be expressed in terms 
of a Kubo formula. <19> If a small magnetic field "pulse"  is applied to lattice 
site n at time t = 0, the resulting magnetization at lattice site l at time t/> 0 
is proportional to the reponse function 

~,,(t) = ~@z(t)6,(0)) (2.11) 

where 6,(0) is the time derivative of the spin at site n, and oh(t) is the spin at 
site l a time t later. Because the operator T describes the time evolution of the 
system, one can argue that 

~#(t) • e~%z~e -tT, ~ z [T, ~,~] (2.12) 

Combining the results of Eqs. (2.9)-(2.12) means that the response function 
can be written in terms of T and ]~b), 

~z(t)  = p(~b[ ~z~e-~rT~l~b) (2.13) 

Clearly the arguments presented here leading to the response function 
q~nz(t) are only suggestive. A rigorous derivation of Eq. (2.13) is essentially 
contained in Kawasaki's review article, (a> 

The susceptibility of the kinetic Ising model, for the case of a uniform 
field, can be expressed in terms of the magnetization operator 

M = ~ a,~ (2.14) 

The uniform field response function is 

~(t) = t3@ 1Me- ~WTM] if> (2.15) 

and the susceptibility is the positive time Fourier transform of the response 
function 

X(CO) = e~tO(t ) dt =/3(~blM _ MI~> (2.16) 

Ordinarily, one thinks of X(CO) as the experimentally measurable quantity, 
but sometimes the response function q~(t) gives one more physical intuition. 

3. THE S O L U T I O N S  

The time-dependent linear response of the one-dimensional kinetic 
Ising model depends in detail on the spin-flip rates W(ab, ), since these rates 
determine the structure of T. The two solutions presented here correspond to 
cases where the W(ab, ) are picked to make T particularly simple. The spin- 
flip rates and some of the formal manipulations necessary to cast T into a 
convenient form are presented in Section 3.1. The solutions to the Glauber 
model and the modified model are presented in Sections 3.2 and 3.3. 
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3.1. General  S t r u c t u r e  

The transition rates for the one-dimensional kinetic Ising model can be 
expressed in terms of two constants, Wo and W. 

The spin-flip rate for a spin between two antiparallel spins is Wo. The 
rate for a spin between parallel spins is We 2eJ if the spin is flipping toward 
alignment with its nearest neighbors, and it is We- 2BJ otherwise. These rates 
are shown pictorially as: 

( t ,  t ,  ~ ) ~ ( t ,  ~, ~) z Wo 
( t ,  ~, t ) - + ( t ,  '~, t )  ~ We2eJ (3.1) 
( t ,  t ,  t ) - - > ( t ,  ~, t )  ~ W e  - ~ J  

It is important to note that there is no simple physical argument which relates 
Wo and W. The only difference between Glauber's form of the kinetic Ising 
model and the modification presented here lies in the choice of these two 
parameters. 

Once the spin-flip rates are determined, the operator T can be obtained. 
It is convenient to write T in terms of Pauli matrices. The nondiagonal part 
of T is Tm~, 

~F cr ~ W(1 ~._lcr.+l)] (3.2) TND = - - � 8 9  ~ .~[Wo(1 - . - 1  .+~)  + + ~ 

Here (1 + c,g_ 1,~+ 1)/2 projects out the configurations in which the spins at 
sites (n - 1) and (n + 1) are parallel or antiparalM, and ~.~ flips the spin at 
site n. A similar construction yields the diagonal part of T, 

TD = �89 ~ (1 - ~_lcr~+l) 

+ �88 + ~._lcr=+l)(1 cr * Z Z - -  ~ O.n+ 
1)  

?l 

+ �88 -~B~ (1 + m~-1~+1)(1 + ~ ,~.+ 1)  (3.3) 

This form for T (=  TND + TD) is cumbersome. The algebra presented in the 
appendix leads to a decomposition of T into "single-site" terms T~, which 
have the relatively simple properties represented in the following five 
equations: 

with 

For n r m, 

T = E T. (3.4) 

r . l r  = 0 

Also, 
[T., o - ~ ]  = 0 

T.,,JIr = [a~. * + b(~g-1 + or.+ 

(3.5) 

(3.6) 

(3.7) 
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with 
a = 

_ _  m 

Wo + W cosh(2/3J), b = - W sinh(2/3J) 
c = - Wo + Wcosh(2/3J) 

J. C. Kimball 

(3.8) 

3.2. The Glauber Model  

The dynamics of the kinetic Ising model is particularly simple if one 
chooses the spin-flip rates suggested by Glauber. If  ( -  e.  +- e~) denotes the 
transition in which only or. changes sign, the simple choice is 

W ( - % + - % )  = Wo{1 - % tanh[fiJ(%_l + %+1)]} (3.9) 

If  Wo is independent of temperature, this corresponds to the choice of 
parameters described in Section 3.1 as 

Wo = const, W = Wo/cosh(2~J) (3.10) 

With this choice of the spin-flip parameters, the coefficient c in Eqs. (3.7) and 
(3.8) vanishes. As a result, Mt~b) is an eigenfunction of T [M is defined in 
Eq. (2.14)] 

TM[~b) = aaMl~b ) (3.11) 
with 

)~a = 2Wo[1 - tanh(2flJ)] 

The response function [Eq. (2.15)] is then 

~(t) = /3(~b[MMldf),~G exp(-- Aat) (3.12) 

s o  

~(t) = fiN[exp(2fiJ)]hQ e x p ( -  hal) (3.13) 

The frequency-dependent susceptibility is then obtained from Eq. (2.16), 

X(o0 = /3N exp(2/3J)/(1 - ia,/aa) (3.14) 

This gives the traditional Ising model susceptibility when a, = 0. 

3.3. The N e w  Solution 

The problem with any choice of the spin-flip parameters (Wo and W) 
other than Glauber's choice is that M[~b) wilt no longer be an eigenfunction 
of T. The alternative solution to the kinetic Ising model which is presented 
here is simply another judicious choice of the spin-flip parameters, so that 
cr~]~b) is the sum of  two eigenfunctions of T. Instead of forcing c to be zero, 
the parameters Wo and W are chosen so that 

b + c = 0  (3.15) 
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with b and c stitl given by Eq. (3.8). This is equivalent to the requirement that 

W = Woe TM (3.16) 
or, pictorially, 

(~, ~, 4 ) ~ ( ~ ,  4, 4 ) z  Wo 
( ~ ,  $ ,  ~ ) - - ~ ( ~ ,  ~ ,  ~?) z Woe 4BJ (3.17) 

(1', I', ~ ) - + ( ~ ,  4, I') z w0 

The linear response of this system is obtained by writing M[~b> in terms 
of the eigenfunctions of T. The terms of Eq. (3.8) become 

c = Woe 2~J sinh(2/3J), b = - c ,  a = c + 2 (3.18) 
Let 

S ~ ~ ~ (3.19) = Gn_iGg Gn+l 

Then, applying the properties of T described in Eqs. (3.4)-(3.8), we obtain 

TMI~> --- (a - 2c)Ml~b > + cSl~b> (3.20) 
and 

TSI%) --- 3aS[~b> - 3cMI%> (3.21) 

These two equations (3.20) and (3.21) form a closed system. No higher order 
terms appear i fb  + c = 0. Thus MI4,> can be written in terms of two eigen- 
vectors of T, denoted If2+) and ]f~_). The eigenvectors are written as 

If~s> = ~sMI4,> +/3ss[4,) (3.22) 

and the associated eigenvalues are a~. The equations which determine the 
eigenvectors can be written as a 2 • 2 matrix equation 

(a )( . )0)  - - 3 c  = As (3.23) 
c 3a /3s /3 s 

The matrix does not appear Hermitian because Ml~b > and SI~b > are not 
orthogonal or normalized to unity. Of  course (f2+/f2_ ) = 0. The eigenvalues 
of  the matrix are 

As = c + 4 _ +  r (3.24) 
where 

r = (c 2 + 8c + 4) 1/2 (3.25) 

The normalization of the eigenvectors if2• is picked so that c~+ + ~_ = 1 
and/3+ +/3_  = 0. This means 

MI%) = ]f~+) + [~2_) (3.26) 

and the eigenvector coefficients are 

+_ c/(2r) ] 
(3.27) 
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Having found the relevant eigenvectors and eigenvalues of T, we obtain 
the response function ~(t) from Eq. (2.15) and the decomposition of Ml~b) 
given by Eq. (3.26), 

~(t) =/3[(_9+A+ exp(-A+t) + @_A_ exp(-A_t)] (3.28) 
where 

0~ = ( ~ b l M ] f ~ •  ~e (r T- (2 + c) ) 
(1 - ~7) 2 T- c (3.29) 

and ~7 = tanh(/3J). The form for (_9• is obtained from equilibrium spin-spin 
correlation functions. The susceptibility is obtained in the same way as was 
done for the Glauber model, and 

( @+ @- ) (3.30) 
X(~  = 1 3 N  1 - ioJ /A+ + 1 - -  ~/)t_ 

4. DISCUSSION 

The linear response properties of the two versions of the one-dimensional 
kinetic Ising model are given by the functions ~(t), or equivalently the suscepti- 

80 i /  i 
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2 . 0  
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0.,4 0.8 1.2 

PJ 
Fig. 1. The transient and slow relaxation rates (,~+ and ~_) of the new model compared 

with the single relaxation rate ;tG of the Glauber model as functions of/~J. 
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bilities X(o~). A few example situations will be considered here to make the 
results more tangible. 

First, note that the response functions which characterize the two 
versions of the kinetic Ising model are in some ways similar. In both cases, 
~(t) describes a monotonic relaxation toward equilibrium. This feature is 
common to all systems described by an essentially Hermitian master 
equation.(20.21) 

There are also some important differences between the two versions of 
the kinetic Ising model. The most obvious difference is that ~(t) of the Glauber 
model is characterized by a single exponential decay rate Aa. The modified 
model response function is characterized by both " t rans ient"  and "s low"  
decay rates A+ and A_. 

One can get an intuitive picture of the dynamics of the two systems by 
comparing Aa with A+ and ,~_ as functions ofpJ.  Such a comparison is shown 
in Fig. 1 with W0 = 1 for both models. One can see from this figure that the 
slow decay rate (),_) is comparable with Aa, but the transient decay rate is 
always considerably larger. Both systems exhibit slowing down for low 
temperatures, 

)~a --+ 4 Wo e x p ( -  4flJ) ,  )t _ -+ 12 Wo exp( - 4f iJ)  

This means that at low temperatures, the Glauber version of the kinetic 
Ising model is three times as slow as the new version, provided both models 
have the same value of Wo. 

3.0 I k I I 

Z 2 0  

I.O 

-,e- 

0 I i f I 
0 0.1 0 .2  0.3 0.4 

t 

Fig. 2. The linear response functions if(t) for the new model and the Glauber model. 
The dashed line shows the relaxation of the new model when the transient response is 
ignored. 
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The transient decay rate A+ is also shown in Fig. 1, and A+ increases 
rapidly with flJ so that in the low-temperature limit 

A + -~ Wo exp(+ 4fiJ) 

This rapid decay rate can be identified with the very rapid spin-flip process 
which aligns a spin with its parallel nearest neighbors. At higher temperatures, 
one cannot easily associate different spin-flip processes with the decay rates 
A+ and A_. 

The transient and slow response of r can be easily seen in Fig. 2, 
where it is compared with Ca(t) at an intermediate temperature (SJ = 1/2). 

The susceptibilities of the two versions of the kinetic Ising model pre- 
sented here can be obtained exactly only because of their relative simplicity. 
In general, relaxation to equilibrium is characterized by an infinite spectrum 
of decay rates rather than a sum of one or two exponential decays. 

A P P E N D I X  

The following is a brief description of the steps necessary to transform 
T given by Eqs. (3.2) and (3.3) into the more convenient sum described by 
Eqs. (3.4)-(3.8). 

Manipulation of the Pauli matrices of Eqs. (3.2)-(3.3) yields 

ITZ Z r = ~ [(w + Wo) + ( w  - Wo) n - l~+z l f f ,  (A1) 
n 

with 
= - �89 + �89 8 . / -  (sinh fiJ)%~g + 11 

x [cosh flJ - (sinh flJ)~n~a~_l] 

Further manipulation gives 

._z[1 - ar'~\ 
= An \/I----T--IA#I 

where 

(A2) 

(A3) 

-- I Z Z A~ -i = [cosh �89 (sinh @J)~n am+i] 

x [cosh � 89 - (sinh �89 i] (A4) 

and An is given by the above expression except that the two minus signs are 
changed to plus signs. 

A set of projection operators G~ are defined as 

/ I - ~nx\ -i 
Gn = A,~t-------f~)A,~ (A5) 

Then 
T = ~ Tn (A6) 

n 
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with 
= - W o ) e . -  l e .  + 1]A~ G .  ( A 7 )  r~ [ ( W +  Wo) + (W ~ ~ -2 

Multiplication of the prefactor times A~ -2 gives 

T, = {[Wcosh(2fiJ) + W0] - W(sinh 2/3J)e,~(a~+l + eg-z) 
(TZ Z + [W cosh(2flJ) - Wo] n- ~n + 1}G, (A8) 

This form for T is particularly convenient because its ground state ]r 
can be written as 

]~b) = (2N/Z)1/2 1--~ {[cosh(�89 + sinh(�89 (A9) 
n 

where ]0) is the ground state of T when rio r = 0. One can prove that tr is 
the ground state of T. Let 

]~b,) = A ;  1 Ir (A10) 

This new vector has spin n decoupled from all the other spins. That is, [r 
can be separated into a sum of equal parts of spin up and spin down for spin 
n, times a function of all the other spins. This means that 

(1 - ~  
G,~[~b) = A~ ~ 1r = 0 (All )  

and 
TIC) = 0 

Similarly, since e,~ commutes with A~-1, and since 

we have 

(A12) 

(A13) 

G,a,~[r = a~lr  (A14) 

The results of Eqs. (A5), (A6), (A8), (All) ,  and (A14) yield the properties 
of T described in Eqs. (3.4)-(3.8). 
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